

202

© 2023, IRJEdT Volume: 05 Issue: 03 | March-2023

SCALABLE PROCESSING USING KAFKA

ALONG WITH AKKA ACTOR

1Balasubramaniam P

Computer Science And Engineering

Bannari Amman Institute Of Technology

Erode, Tamil Nadu

balasubramaniam.cs19@bitsathy.ac.in

2Kiruthikashree K
Computer Science And Engineering

Bannari Amman Institute Of Technology

Erode, Tamil Nadu

kiruthikashree.cs19@bitsathy.ac.in

3Thamaraikannan M
Computer Science And Engineering

Bannari Amman Institute Of Technology

Erode, Tamil Nadu

thamaraikannan.cs19@bitsathy.ac.in

Abstract - An organisation manages its relationships with

consumers using a system called customer relationship

management, which often involves studying a lot of data

through data analysis. For that, Changes done in one module

of a system has to be updated in all other modules and has to

be processed by many other custom functions. Here we will

first store the changes made in any module of the system as a

message in kafka Brokers and then fetch and process using

consumers. But in consumers, each message is processed by

single thread which is very much time consuming. In order to

overcome this problem, we will be using Akka Actor, which is

actually a multithreading environment.Akka is a open-source

framework. Applications that are concurrent, distributed, and

fault-tolerant are developed using it. An actor is a thing that

exchanges messages with other actors. Actors each have unique

states and behaviours. Using Actor, we can process a single

message using multiple threads so that we can process

messages faster. We have made some changes in available

framework and made it customizable to our need.

Keywords- Apache kafka, Akka Actor, Scalability.

I. INTRODUCTION

At any significant internet company, a lot of data is

generated. This information typically consists of two types

of information: (1) operational metrics such as service call

stack, call latency, and errors; and (2) user activity events

such as logins, page views, clicks, "likes," sharing,

comments, and search queries on each computer. Log data

has long been a part of analytics used to monitor indicators

like user engagement and system utilisation. Activity data,

however, is now a component of the production data

pipeline used directly in site features thanks to recent

developments in internet applications. Among them are: (1)

search relevancy; (2) recommendations that may be

influenced by item popularity or co-occurrence in the

activity stream; (3) ad targeting; and (4) other uses.

Because the volume of this creation and real-time utilisation

of log data is orders of magnitude greater than the volume of

"actual" data, it presents new difficulties for data systems.

For instance, computers is frequently used for search,

suggestions, and advertising. Granular click-through rates,

which produce log entries for dozens of items on each page

that are not clicked in addition to every user click. China

Mobile collects between 5 and 8 terabytes (TB) per day of

call records, and Facebook collects about 6 TB per day of

various user activity events.

A distributed, divided, replicated commit log service is

Kafka. With a distinctive look, it offers messaging system

features. Even with TBs of communications saved, it could

handle hundreds of thousands of messages every second.

Kafka performs consistently even on very basic hardware by

appending messages to files using on-disk structures. Akka

Actor is integrated with kafka for faster processing of messages.

The actor model provides a high-level abstraction for writing

scalable and concurrent systems, making it easier to process

things faster. If we integrates Akka Actor with kafka, we can

process messages more efficiently and quickly.

II. LITERATURE SURVEY

It is a centralised service that handles group services,

distributed synchronisation, configuration information

maintenance, and naming. Akka Actors was inspired by the

actor model, a mathematical theory of concurrency that was

first introduced in the 1970s. The actor model provides a

powerful and flexible way to model and implement

concurrent systems, and Akka Actors builds on this

foundation to provide a practical, scalable, and production-

ready implementation.

Scalability of the actor model has been a subject of research

and the Akka Actors framework has been noted as one of

the implementations of the actor model that offers

scalability.Actors in Akka communicate by sending

messages to each other, which eliminates the need for locks

and other synchronization mechanisms that can cause

scalability bottlenecks. Akka Actors provides an

implementation of the actor model, which has been widely

adopted in industry and academia for building concurrent,

scalable, and fault-tolerant systems.

ZooKeeper is simple. It allows distributed processes to

coordinate with each other through a shared hierarchal

namespace which is organized similarly to a standard file

system. The name space consists of data registers - called

znodes, in it parlance - and these are similar to files and

directories. Unlike a typical file system, which is designed

for storage, ZooKeeper data is kept in-memory, which

means it can achieve high throughput and low latency

numbers.

ZooKeeper is ordered. It stamps each update with a number

that reflects the order of all ZooKeeper transactions.

Subsequent operations can use the order to implement

higher-level abstractions, such as synchronization

primitives.

ZooKeeper is fast. It is especially fast in "read-dominant"

workloads. Its applications run on thousands of machines,

and it performs best where reads are more common than

writes. Apache ZooKeeper is a project under the Apache

Software Foundation which is open source.

The results of the ZooKeeper's development team at Yahoo!

Research indicate that Zookeeper can perform very well as

mailto:balasubramaniam.cs19@bitsathy.ac.in
mailto:kiruthikashree.cs19@bitsathy.ac.in
mailto:thamaraikannan.cs19@bitsathy.ac.in

203

© 2023, IRJEdT Volume: 05 Issue: 03 | March-2023

long as reads > writes. This is because writes involve

synchronizing the state of all servers (Reads outnumbering

writes is typically the case for a coordination service).

Figure 1 Throughput of ZooKeeper by Yahoo Research

Apache ZooKeeper is an integral part of Apache Kafka.

Zookeeper is a cluster management tool. It is used by Kafka,

as Kafka is a distributed application and it needs ZooKeeper

to manage the cluster on which Kafka runs on.

In addition, actors can be distributed across multiple nodes,

enabling applications to scale horizontally by adding more

nodes to the system.

There have been several studies that have compared the

performance of Akka Actors to other frameworks and

technologies, and the results have generally shown that

Akka Actors provides good performance and low latency.

Proposed Approach

3.1 Introduction to Kafka:

A distributed, divided, replicated commit log service is

Kafka. With a distinctive look, it offers messaging system

features.

 Topic-based message feeds are maintained by

Kafka.

 Producers are processes that post messages to

Kafka topics.

 Consumers are programmes that process the
published message feed and subscribe to topics.

 Kafka is operated as a group of servers, referred as

brokers.

As seen in figure 2, producers transmit data to Kafka cluster

through the server groups, which then distributes them to

consumers.

Figure 2. Basic Kafka Design

3.2 Topics and Logs:

A topic is a name for a category or feed where messages are

posted. The Kafka cluster keeps a partitioned log for each

topic that looks like this:

Figure 1. Anatomy of a Topic

Each partition is a commit log that is continuously expanded

with an ordered, immutable sequence of messages. The

offset is a sequential id number that is given to each

message in a partition to identify the messages uniquely

within the partition .

Whether or not they have been consumed, all published

messages are kept in the Kafka cluster for a configurable

amount of time. For instance, if the log retention is set to

two days, then a message is available for consumption for

two days after it is published before being deleted to free up

space. Performance by Kafka is essentially constant.

In actuality, the only metadata that is saved for each

consumer is their offset, or place in the log. Normally, a

consumer advances its offset linearly as it reads messages,

but in reality, the consumer controls the position and is free

to consume messages in any sequence they like. For

instance, a consumer can revert to a previous offset to

process again.

In the beginning, they enable the log to scale beyond the

limit of what can fit on a individual server. A topic may

have several partitions so it may hold unlimited amount of

data, but each partition must fit on the servers that host it.

3.3 Replication:

The Kafka servers or brokers disseminate the log's partitions

among themselves. Other brokers for a partition are

followers of the one leader broker for that partition.

In essence, all information travels to and from the leader.

Following that, information is internally duplicated from the

leader to every follower. Kafka does this in an asynchronous

manner.

This is being done out of caution. If the partition's leader

broker fails, one among the followers takes over as leader.

This is achieved through a Kafka-used method called leader

election.

3.4 Producers:

Data is published by producers on issues of their choosing.

The producer is in charge of deciding which message is

204

© 2023, IRJEdT Volume: 05 Issue: 03 | March-2023

appropriate for each topic split. To balance the load, this is

achieved through round-robin style, or using a semantic

partition function.

3.5 Consumers:

Traditional messaging strategies include publish-subscribe

and queuing. Each data from a broker is sent to a specific

consumer in a queue, whereas in publish-subscribe, the

message is broadcast to all consumers. Kafka provides the

consumer group as a single consumer abstraction that

unifies both of these.

Each message published to a certain topic is delivered to one

consumer instance inside each subscribing consumer group.

Consumers identify themselves using a consumer group

name. Consumer instances may run in different hardware or

processes.

This operates exactly like a conventional queue balancing

load over the consumers if all the consumer instances

belong to the same consumer group.

When different consumer groups are represented in each

consumer instance, this operates similarly to publish-

subscribe.

Figure 2. Example of Kafka sending

messages to two consumer groups

Compared to a conventional messaging system, Kafka offers

higher ordering guarantees. When many consumers use a

typical queue, the server keeps messages in the queue's

original order and distributes them to the consumers in that

order. Messages may arrive out of order on various

consumers even when the server distributes them in order.

This is due to messages are delivered asynchronously to

consumers. This effectively means that when there is

parallel consumption, the messages' order is lost. Here

parallel processing is not involved, although messaging

systems frequently get around this by allowing just one

process to consume from a queue under the concept of

"exclusive consumer".

With the help of a pool of consumer processes, Kafka may

offer load balancing and ordering guarantees. To do this, the

topic's partitions are assigned to the consumer group's

members in such a way that each partition is consumed by

precisely one member of the group.

By doing this, we make sure that the consumer reads that

partition only once and consumes the data sequentially.

Since there are numerous partitions, the load is still

distributed among numerous customer instances. However,

the sequence of messages cannot be preserved if there are

more consumer instances than partitions.

Additionally, Kafka does not offer a total order of messages

across partitions in a topic, only over messages inside a

single partition.

3.6 Introduction to Akka Actor:

Akka is an open-source toolkit for building highly

concurrent, distributed, and resilient message-driven

applications for Java and Scala. The Actor Model is a

fundamental concept in Akka and is used to build scalable

and resilient systems. An Actor is an object that

encapsulates state and behavior, communicates with other

Actors by exchanging messages, and can be used to model a

wide range of concurrent and distributed systems.

III. DESIGN AND ARCHITECTURE

4.1 Distributed Coordination:

Each producer can choose whether to publish a data to a

particular partition that is chosen at random or one that is

decided by a partitioning function and key based on the

semantics. We'll concentrate on the interactions between

brokers and consumers.

It was the first to propose the idea of group of consumers.

Every group of consumers consists of one or more users

who jointly consume a variety of subscribed-to subjects, a

message is only sent to one user within the group.

Coordination between consumer groups is not required as

each group of customers receives the entire collection of

subscription messages separately.

Figure 3. Kafka Architecture

Figure 4. Kafka Log

205

© 2023, IRJEdT Volume: 05 Issue: 03 | March-2023

This design has a significant side advantage. A user may

purposefully consume data again by going back to an earlier

offset. This goes against the queue's fundamental tenets, but

many customers find it to be indispensable. For instance, the

application may be able to replay specific messages after

fixing an issue in the consumer's application logic.

The same consumer group may take part in various

procedures or employ various devices. The objective is to

equally distribute among the clients the communications

kept in the brokers without placing an unnecessary

coordinating strain.

4.2 Concurrent Processing:

An Actor has its own mailbox where incoming messages are

placed and processed one at a time in the order they were

received. This provides a clear separation of concerns

between the Actors and helps to manage concurrency in a

more controlled and scalable way. The Akka Actor Model

also provides a hierarchical structure, where Actors can be

organized into parent-child relationships. This allows for the

creation of complex systems with more structure and

reduces the need for manual coordination between Actors.

In summary, Akka Actors provide a way to build scalable,

concurrent, and resilient systems by modeling the objects in

the system as Actors that communicate with each other

through message passing.

IV. DESIGN AND ARCHITECTURE

5.1 Running Kafka:

Figure 7. System Design

The above figure represents the design which I have

implemented. App servers are the servers which produce

data to be produced to the subscribers/listeners. Process

Servers are those servers which consume data from topic

and figures out to which subscriber to send to.

Redis is an open-source, networked, in-memory, key-value

data store with optional durability. The name Redis means

REmote DIctionary Server. It is used because of high

performance for read and writes of small amount of data.

When a data is consumed, the Process Server receives the

message offsets, which are then stored in this location.

Data: The data delivered consists of headers used to specify

which subscribers the data should be sent. Typically, it is a

list of all the names of subscribers.

Flow: Both the data and headers used to identify which

subscribers the data should be sent to make up the delivered

data. Usually, it is a list of every subscriber's name.

5.2 Executing Akka Actor:

Consume messages from Kafka topic and forward it to actor

for execution. In the actor's receive method, you can process

the incoming messages from the topic and pass it to the

appropriate actors for further processing. Create instances of

the Actors for processing the consumed message and wire

them together to form a processing pipeline. The Consumer

Actor then pass the received messages to the appropriate

actors for processing.

V. IMPLEMENTATION DETAILS

6.1 System Requirements:

 Operating System – Ubuntu 12.04 64 bit

 RAM installed – 8 GB DDR4 SDRAM

 CPU – i5 9th Generation 3.5 GHz

 Kafka – version 2.8

 Hard Disk size – 1 TB (minimum required due to

Kafka’s method of saving messages on disk

 Ethernet – Gigabit Ethernet
 AKKA – version 2.4

6.2 Kafka Implementation:

6.2.1 Producer APIs:

Two low-level producers are wrapped by the Producer API,

they are:

 kafka.producer.SyncProducer

 kafka.producer.async.AsyncProducer.

6.2.2 Consumer APIs:

 The "basic" low-level just one broker keeps an API

connection and closely resembles the network

queries made to the broker. The offset is provided

in with every call to this stateless API, allowing the

user to manage this metadata anyway they see fit.

 The high-level API enables consumption off the

cluster of machines without taking into account the

underlying topology while hiding the specifics of

brokers from the client. Additionally, it preserves

the condition of what has been consumed.

6.3 Akka Actor Implementation:

 Create an ActorSystem: This is the entry point to

use Akka and provides a shared environment for

Actors to run in.

 Define an Actor: In Akka, Actors are defined by

creating a subclass of the AbstractActor class and

implementing the createReceive method. The

createReceive method returns a PartialFunction

that defines the behavior of the Actor.

 Create an Actor instance: To create an instance

of an Actor, you need to use the ActorRef reference

obtained from the ActorSystem.

 Send messages to the Actor: To send messages to

an Actor, you use the tell method on the ActorRef

reference.

206

© 2023, IRJEdT Volume: 05 Issue: 03 | March-2023

VI. CONCLUSION

In-depth research has been done on Apache Kafka and Akka

Actor, and the system design has been successfully

deployed. Kafka has a pull-based consumption approach,

similar to a messaging system, which enables an application

to consume data at its own tempo and rewind the

consumption as necessary. Kafka outperforms traditional

messaging systems in terms of throughput by concentrating

on log processing applications. It can grow out and has

integrated distributed support. Additionally, Akka Actors

have been shown to perform well in comparison to other

similar technologies, and can handle high amounts of

incoming messages.

VII. LIMITATIONS & FUTURE SCOPE

Developing a queuing system that can manage and process

data from modules with high data rate.

 To implement Kafka as a system used with

Hadoop rather than just to transfer messages as

it is now.

 To integrate Akka Actor for all the kafka

consumers which takes large time for execution

of consumed messages.

VIII. REFERENCES

[1] Kafka: A Distributed Messaging System for Log

Processing" by Jay Kreps, Neha Narkhede, and Jun

Rao (2010).

[2] "Design and Deployment of Large-Scale Messaging

Systems using Apache Kafka" by Gwen Shapnick,

Kurt Greaves, and Jun Rao (2015).

[3] "Kafka at LinkedIn: Scale and Performance" by

Samarth Jain, Jay Kreps, and Neha Narkhede

(2012).

[4] "The Log: What every software engineer should

know about real-time data's unifying abstraction" by

Jay Kreps (2014).

[5] "An Evaluation of Akka as a Distributed System

Framework" by Arne Roennqvist and Thomas Arts

(2015) .

[6] "Building Scalable and Resilient Applications with

Akka Actors" by Roland Kuhn (2015)

[7] "A Study of Scalability and Resilience Patterns for

Akka Actors" by Bilgin Ibryam and Davide D.

Longo (2016).

[8] "Akka in the Large: Building Scalable and Resilient

Applications with Actors" by Konrad Malawski and

Igor Wojda (2016)

[9] "A Practical Guide to Developing Reactive

Applications with Akka Actors" by Viktor Klang

(2017)

[10] "Using Akka Actors for Scalable and Resilient

Microservices" by Adib Saikali and Pascal

Vijayakumaran (2018)

[11] "Akka Actors in Action: Building Scalable,

Resilient, and Efficient Applications" by Hector

Veiga Ortiz (2020).

